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1. Introduction

Tungsten heavy alloys (WHAs) are attractive candidates for use as kinetic energy
penetrators (i.e., armor-piercing projectiles) because of their relatively large mass
density, high melting point, and high strength at elevated rates of loading (Cai et al.,
1995). Previous experimental and numerical investigations reported in the literature
(Weerasooriya and Beaulieu, 1993; Ramesh, 1994, Subhash et al., 1994a, b; Zhou et
al., 1994; Zhou and Clifton, 1997; Weerasooriya, 1998, 2003; O’Donnell and
Woodward, 2000; Woodward and O’Donnell, 2000) reveal a variety of failure modes
exhibited by WHAs strained at moderate to high rates, including brittle fracture at
W–W grain boundaries, matrix-grain decohesion, ductile matrix rupture, transgra-
nular cleavage of W grains, and adiabatic shear banding. Spallation (material
separation due to tensile wave propagation) has been observed in plane shock wave
experiments on this material (Dandekar and Weisgerber, 1999). Macroscopic
constitutive models (Stevens and Batra, 1998; Wei et al., 2001; Yadav et al., 2001)
typically used to represent the two-phase system in numerical simulations currently
lack a rigorous description of the kinematics of anisotropic plasticity (e.g. plastic
spin), the role of crystallographic orientation of constituent grains, and the effects of
crystal morphology on failure processes. Microstructural characteristics such as
grain shape, spatial arrangement of grains, and local crystallographic orientation are
known to influence the response of the material to thermomechanical loading.
Experimental (Bruchey et al., 1991, 1992; Kingman, 1997) and numerical
(Schoenfeld and Benson, 1997) methods have demonstrated a possible correlation
between lattice orientation of W single crystals and the performance of such crystals
as kinetic energy penetrators. Wei et al. (2000) studied the influence of pre-twisting of
polycrystalline WHA specimens on the response under combined compressive-shear
loading and found that a certain degree of pre-twisting of the microstructure
promotes adiabatic shear localization at high strain rates. Such shear localization is
considered desirable in armor penetration events, since it is thought to promote a
‘‘self-sharpening’’ effect leading to greater depth of penetration (Magness, 1994;
Yadav et al., 2001).

The particular material studied here consists of relatively stiff and brittle pure
tungsten grains (BCC), most often nearly equi-axed in shape, embedded in a
relatively compliant and ductile matrix (FCC) consisting of nickel (50 wt.%), iron
(25 wt.%), and tungsten (25 wt.%). Nominally, the composite micro-
structure consists of 90% pure W and 10% matrix alloy, leading to an
overall weight distribution of 93W-5Ni-2Fe. Fabrication of the composite
microstructure is conducted via isostatic pressing and sintering of a mixture of W,
Ni, and Fe powders, followed by annealing to remove absorbed hydrogen and
then possible quenching, swaging, and/or pre-twisting to alter the dynamic
mechanical properties prior to deformation testing at high strain rates (Weerasoor-
iya, 1998; Wei et al., 2000). Typical grain sizes are 10–30mm for the W crystals and
200–500mm for the matrix phase (Zamora et al., 1992; Zhou, 1993), meaning
that multiple W crystals are often embedded within each single ‘‘grain’’ of the
matrix phase.
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Previous computational work by Zhou and co-workers (Zhou et al., 1994; Zhou,
1998a, b) elucidated the role of grain morphology, heat conduction, strain- and
strain-rate hardening, and thermal softening on the elastoplastic deformation and
shear localization of WHAs at nominally high applied rates of shear and combined
pressure-shear loading. While grain and matrix phases were resolved discretely in
these calculations, each constituent was treated as an isotropically-hardening,
hypothermoelastic-viscoplastic material, thereby neglecting the possibly significant
effects of lattice rotation and anisotropic strain hardening associated with the
evolution of crystallographic texture within each phase. Thus the potential exists for
development of more descriptive constitutive models accounting for local crystal-
lographic orientation effects, models which would simultaneously engender more
accuracy to ballistic simulations and support the design of WHA microstructures
tailored for enhanced thermomechanical properties. Recent high rate experiments of
Weerasooriya (2003) indicated that tensile failure of WHA specimens often initiates
via local fracture at W–W (i.e., grain–grain) interfaces, and less often at interfaces
between W grains and the matrix phase. Considering W–Ni–Fe alloys of various
compositions deformed quasi-statically and at room temperature, Woodward and
O’Donnell (2000) ranked contributions of various mechanisms to total crack area, in
order of percentage of potential area cracked, as follows in order of descending
frequency: W–W interfacial failure, W-matrix interfacial separation, matrix rupture,
and cleavage fracture within W grains. However, in a companion publication,
O’Donnell and Woodward (2000) emphasized that at higher ambient temperatures
ð4373 KÞ, the propensity for cleavage fracture within grains tends to increase at the
expense of interfacial fracture. Zamora et al. (1992) observed that microscopic
fracture mechanisms and macroscopic fracture toughness measurements vary with
chemical composition, grain size, and grain contiguity. Failure strengths of interfaces
within the composite microstructure also depend strongly upon processing
conditions; for example, slow cooling rates following post-sintering annealing may
result in segregation of strength-reducing impurities at interfaces (German et al.,
1984). In our numerical framework, we model interface fracture by invoking the
cohesive zone approach (Barenblatt, 1959; Dugdale, 1960; Needleman, 1987; Xu and
Needleman, 1994; Camacho and Ortiz, 1996). Thus, unlike prior computational
investigations that did not consider fracture explicitly, we are able to capture a
failure mode that may dominate the response of the WHA material system when
subjected to a net tensile hydrostatic stress.

The present work employs single crystalline plasticity models for each phase, as
discussed in Section 2. Models for both materials are embedded within a general
thermodynamic framework applicable for describing any thermoelastic-viscoplasti-
cally-deforming single crystal. Finite deformation, strain-rate dependence, heat
conduction, thermal expansion, thermal softening, and thermoelastic coupling are
included in the description. Furthermore, our framework enables prediction of the
fraction of plastic work stored in the material as residual elastic energy associated
with lattice defects (i.e., dislocations). Our treatment of this ‘‘stored energy of cold
work’’ can be viewed as an extension to finite crystal plasticity theory of the
macroscopic, linearized elastic–plastic framework of Rosakis et al. (2000), who



ARTICLE IN PRESS

J.D. Clayton / J. Mech. Phys. Solids 53 (2005) 261–301264
demonstrated the strain and strain-rate dependence of the fraction of plastic work
converted to stored energy.

Cohesive fracture modeling is discussed briefly in Section 3. A temperature- and
rate-independent, linear-softening, 2D cohesive finite element approach similar to
that of Camacho and Ortiz (1996) is employed here, with new fracture surfaces
generated at interfaces between continuum elements when the traction on the
interface exceeds the intrinsic fracture strength of the interface (a material
parameter). In our computational modeling scheme, fracture surfaces are only
generated at interfaces between grains of the same and/or different phases; i.e.,
intragranular fractures (cleavage of W-grains and matrix rupture) are not included in
the cohesive zone description invoked in the present work.

Two-dimensional finite element simulations of deforming, realistic WHA
microstructures are conducted, with results given in Section 4. We investigate
parametrically the effects of varying the ratio of fracture strengths of W–W
interfaces and W-matrix interfaces, the initial lattice orientations of the constituent
W crystals and matrix phase, and the representation of the microstructural
morphology, the latter obtained from an optical image of a test sample of the
actual material. Each of these aspects is shown to influence, to a varying degree, the
average stress–strain response and failure behavior of the aggregate. Finally,
multiscale issues important in the construction of a macroscopic damage and failure
model for the homogenized material system are mentioned, following the framework
of Clayton and McDowell (2003, 2004). These issues include description of the
contribution of damage entities (i.e., fracture surfaces) to the average deformation
gradient for a representative volume of material and the appropriate choice of
internal state variables capturing the evolution of damage and its effect upon the
average stress supported by representative volume of material.
2. Crystal plasticity formulation

2.1. Kinematics

Let x ¼ xðX; tÞ represent a smooth time-dependent motion. A multiplicative
decomposition of the deformation gradient is assumed:

f �
@x

@X
¼ fefhfp; ð1Þ

where fe, fh, and fp represent the kinematics of elasticity and rigid-body rotation,
thermal expansion or contraction, and the cumulative contribution of moving crystal
defects, respectively. In Eq. (1) and henceforward, juxtaposition implies summation
over one set of adjacent indices, i.e., ðABÞi:k ¼ Ai

:jB
j
:k for arbitrary second-rank

tensors A and B. In general, none of fe, fh, and fp is a compatible (i.e., integrable)
deformation gradient when considered individually. As shown in Fig. 1, the elastic
and thermal terms dictate the deformation of the slip direction contravariant vectors
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sðaÞ and slip plane normal covariant vectors mðaÞ:

sðaÞ ¼ fefhs
ðaÞ
0 ; mðaÞ ¼ m

ðaÞ
0 fh�1fe�1; ð2Þ

with the superposed ‘‘�1’’ denoting the inverse operation. The velocity gradient l

referred to the current configuration is written as

l �
@ _x

@x
¼ _ff�1 ¼ _f

e
fe�1|fflffl{zfflffl}
�le

þ fe_f
h
fh�1fe�1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�lh

þ fefh_f
p
fp�1fh�1fe�1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�lp

; ð3Þ

where the superposed dot represents the material time derivative. The thermal
deformation is assumed isotropic (Lee et al., 1997), i.e.,

lh ¼ _f
h
fh�1 ¼ aT

_y1; ð4Þ

where y is the temperature change measured from the reference state and aT is the
thermal expansion coefficient giving the change in length per unit current length per
unit increment in y. The unit tensor is written as 1. The plastic velocity gradient in
the intermediate configuration �b of Fig. 1 is defined as (Rice, 1971; Asaro, 1983)

�l
p
� _f

p
fp�1 ¼

Xn

a¼1

_gðaÞsðaÞ0 �m
ðaÞ
0 ; ð5Þ

with _gðaÞ the plastic shearing rate on slip system a, n the number of potentially active
slip systems, and � the tensor product.
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2.2. Balance laws

Localized balance laws are prescribed in the current configuration as follows:

_rþ r trðlÞ ¼ 0; div r þ rb ¼ r €x; r ¼ rT ; r_e þ div q� trðrglÞ ¼ rr; ð6Þ

with r, r, b, e, q, and r the current mass density, contravariant Cauchy stress tensor,
body force vector per unit mass, internal energy per unit mass, heat flux vector per
unit current area, and energy source per unit mass, respectively. Here, div denotes
divergence with respect to current coordinates, e.g. div q ¼ qa

ja ¼ @aqa þ ga
abqb with

the Christoffel symbols of the linear connection in the spatial coordinate system
satisfying 2gadg

d
bc ¼ @cgba þ @bgca � @agcb, where we use the compact notation @a ¼

@=@xa and the spatial metric satisfies gab ¼ @ax.@bx. The trace operation for a second
rank tensor A is denoted by trðAÞ ¼ Ak

:k. The local entropy inequality is written as
follows, with _Z the time rate of entropy production per unit mass:

r_ZX� div
q

y

� �
þ

rr

y
: ð7Þ

The Helmholtz free energy per unit mass c is also introduced:

c � e � yZ; ð8Þ

from which, upon substitution of Eqs. (6) and (8) into Eq. (7), the entropy inequality
becomes

trðrglÞ �
q.=xy
y

	 

Xrð _cþ _yZÞ; ð9Þ

with =x the covariant derivative with respect to x and . a scalar product operation
for vectors, i.e., a.b ¼ aigijb

j.
2.3. Thermodynamic framework

We assume a Helmholtz free energy potential of the form

c ¼ cðee; y; xÞ; ð10Þ

where the intermediate configuration elastic strain 2ðeeÞab ¼ f ea
:a gabf eb

:b � ~gab, with ~gab
a metric tensor on ~b, which in practice is chosen as Kronecker’s delta dab for
simplicity (Simo and Ortiz, 1985), a typical assumption in finite elastoplasticity
(Clayton et al., 2004). The symbol x denotes a dimensionless scalar internal variable
representing stored micro-elastic energy associated with crystal defects that may
impede shearing on each slip system. Expanding the time rate of c and inserting the
result into inequality (9) yields

tr rgðle þ lh þ lpÞ
� �

�
q.=xy
y

	 

Xr @eec : _ee þ ð@ycÞ_yþ ð@xcÞ_xþ _yZ
� �

; ð11Þ
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where the scalar product of two second rank objects is defined by A : B ¼ AijBij , and
where the subscript following the @-operator denotes partial differentiation with
respect to the subscripted variable. Additional algebraic manipulations give

r
~r
ðse � ~r@eecÞ : _ee þ ðtrðrgÞaT � rð@ycÞ � rZÞ_y� rð@xcÞ_x

þ
Xn

a¼1

tðaÞ _gðaÞX
q.=xy
y

	 

; ð12Þ

where ~r is the mass density in configuration ~b and the elastic second Piola–Kirchhoff
stress ðseÞ

ab
� jef e�1a

:a sabf
e�1b
:b with je � det fe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det g= det ~g

p
¼ ~r=r (Teodosiu, 1967).

The resolved Cauchy stress for slip system a is defined by tðaÞ �: r gsðaÞ �mðaÞ
� �

.
Assuming that the independent variables in the potential (10) can be
varied individually (Coleman and Noll, 1963; Scheidler and Wright, 2001), we then
have

se ¼ ~r@eec; ð13Þ

Z ¼
aT

r
trðrgÞ|fflfflfflfflffl{zfflfflfflfflffl}
�w

�@yc; ð14Þ

Xn

a¼1

tðaÞ _gðaÞ � rð@xcÞ_xX
q.=xy
y

	 

: ð15Þ

Notice that the first term on the right of Eq. (14), denoted by w, arises as a
consequence of the explicit inclusion of thermal expansion/contraction in the
kinematic description (1). Rearranging the energy balance in Eq. (6) by appealing to
Eqs. (13) and (14) leads to

ry_w� ry@y _c ¼ rr � div qþ
Xn

a¼1

tðaÞ _gðaÞ � rð@xcÞ_x: ð16Þ

By defining the specific heat capacity ĉ as

ĉ � @ye ¼ @Zeð@yZÞ ¼ �yð@yycÞ þ @Ze@yw; ð17Þ

where we have invoked the differential of relation (8), and by assuming isotropic
heat conduction in the current configuration dictated by Fourier’s law (Zhou et al.,
1994):

q ¼ �k=xy; ð18Þ
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with kðxÞ the thermal conductivity, we can rewrite the localized energy balance (16)
as

rĉ_y|{z}
temperature

change

¼
Xn

a¼1

tðaÞ _gðaÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
plastic

dissipation

�rðð@xcÞ � yð@yxcÞÞ_x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
energy of

lattice defects

þ ry@yeec : _ee|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
thermoelastic coupling

þ divðk=xyÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
heat

conduction

þ rr|{z}
heat

supply

: ð19Þ
2.4. Constitutive models

A free energy potential per unit intermediate configuration volume is specified as

~rc ¼
1

2
ee : cðy; xÞ : ee þ

1

2
kmðy; xÞx2

þ yðyÞ; ð20Þ

where c and m are the elastic modulus tensor in configuration ~b and an effective shear
modulus, respectively, and k is a dimensionless, material-dependent scalar parameter
that we assume is independent of strain rate and temperature. The function yðyÞ ¼
�ĉy lnðy=y0Þ accounts for the purely thermal energy (Rosakis et al., 2000), with y0 a
reference temperature at which y ¼ 0. We shall later demonstrate the explicit
relationship between k and the fraction of plastic dissipation converted to heat
energy (Eq. (36)) and will use this relationship to select appropriate values of k.
From Eq. (13) and partial differentiation of Eq. (20), we see that the stress satisfies
the linear-hyperelastic relationship se ¼ c : ee, or ðseÞ

ab
¼ cabwdðeeÞwd, an adequate

description for the relatively small elastic strains that emerge in the simulations
conducted in the present study. Note that, should the model be used in future work
for simulation of impact events that may engender shockwaves and large volumetric
strains in the material, we suggest an augmentation of our description, for example
with an equation-of-state type formulation (cf. Grüneisen, 1926), to address possibly
nonlinear relationships between pressure, mass density, and temperature.

A power-law viscoplastic flow rule (Hutchinson, 1976) is chosen to model the time
rate of plastic deformation in each phase:

_gðaÞ ¼ _g0

~tðaÞ

gðaÞ

	 
m

sgnð~tðaÞÞ: ð21Þ

Here _g0 and m are material parameters, gðaÞ is the slip resistance due to dislocation
barriers, ~tðaÞ � jetðaÞ is the projected shear stress pulled back to the intermediate
configuration ~b, and sgnðxÞ ¼ x=jxj, with sgnð0Þ ¼ 1. Thermal softening attributed to
increased dislocation mobility at high temperatures is incorporated via the power-
law form (Klopp et al., 1985)

gðaÞ ¼ g
ðaÞ
0 ðy=y0Þ

p; ð22Þ
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with g
ðaÞ
0 the flow resistance at reference temperature y0 (a material parameter) and p

a dimensionless constant for each material. We postulate the following relationship
between the ‘‘average’’ hardening on each system at fixed reference temperature and
the internal variable x:

1

n

Xn

a¼1

ðg
ðaÞ
0 � gðaÞ

y Þ ¼ âmðy0; 0Þ b
ffiffiffiffiffiffi
rT

p|fflffl{zfflffl}
�x

; ð23Þ

with gðaÞ
y an initial yield stress, b the magnitude of the Burgers vector, and rT the

total dislocation line length per unit intermediate configuration volume associated
with shearing impedance. The square-root dependence of flow stress on dislocation
density is a common assumption in the plasticity and materials science literature
(Taylor, 1934; Kuhlmann-Wilsdorf, 1985, 1989; Zikry and Kao, 1996; Kameda and
Zikry, 1998; Ashmawi and Zikry, 2003), as is the assumption of linear dependence of
stored lattice energy on dislocation density (Bammann, 2001; Regueiro et al., 2002;
Svendsen, 2002) implied jointly by Eqs. (20) and (23). The scalar proportionality
factor â accounts for dislocation interactions (Kobytev et al., 1984; Ashmawi and
Zikry, 2003). Both lattice friction stress and effects of the initial dislocation density
are incorporated in gðaÞ

y , the former deemed important in characterizing the flow
stress of BCC metals such as tungsten (Qiu et al., 2001), the latter implying that rT is
a measure of the change in total dislocation density relative to the initial state.

We now focus attention upon pure W crystals, for which we permit slip in the
h1 1 1i close-packed directions on any of the f1 1 0g and f1 1 2g families of planes,
resulting in the number of potentially active slip systems n ¼ 24 (Subhash et al.,
1994a). Possible slip on f1 2 3g planes, typically inactive at room temperature (Argon
and Maloof, 1966; Subhash et al., 1994a), is not represented in our model. Because
single crystalline W is very nearly elastically isotropic, we have, with the
dependencies of elastic moduli on internal structure x suppressed henceforth for
simplicity:

cabwd ¼ lðyÞ ~gab ~gwd þ mðyÞð ~gaw ~gbd þ ~gad ~gbwÞ; ð24Þ

with Lamé’s constant l and ~gab contravariant components of the metric tensor on
configuration ~b. Evolution of slip resistance at reference temperature y0 is specified
by a hardening-minus-dynamic-recovery relation (Armstrong and Frederick, 1966;
Horstemeyer et al., 1999):

_gðaÞ
0 ¼ A

Xn

b¼1

qa
bj_g

ðbÞj � Bg
ðaÞ
0

Xn

b¼1

j_gðbÞj; ð25Þ

with the interaction matrix satisfying

qa
b ¼ dab þ qð1 � dabÞ; ð26Þ

where q is the latent hardening ratio.
We now discuss the constitutive model for W–Ni–Fe matrix material, for which

the number of potentially active slip systems is chosen as n ¼ 12. Dislocation glide is
assumed to be the dominant plastic deformation mode for this FCC metal, occurring
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in h1 1 0i close-packed directions on f1 1 1g planes. Elastic isotropy is also assumed
for this phase (Zhou et al., 1994), meaning that Eq. (24) applies, though with elastic
stiffness constants for the matrix substantially lower in magnitude than those for the
pure W. Strain rate- and temperature-dependent slip resistances in crystals
comprising the matrix phase are also specified via relations (25) and (26), albeit
with different values of A, B, and q than those used for the pure W grains.

2.5. Numerical implementation and material parameters

Two idealized sets of thermal boundary conditions are considered now for the
purposes of calibrating model parameters: isothermal and adiabatic. Note, however,
that heat conduction is fully taken into account in the theoretical framework and in
the explicit finite element implementation discussed in later parts of the current
work. A fully implicit, hyperelastic-viscoplastic algorithm (Cuitiño and Ortiz, 1992;
McGinty, 2001) is employed here to integrate the elastic–plastic constitutive
response. Let subscripts t and t þ Dt denote consecutive computation times in a
nonlinear analysis, i.e., start and end times in a particular iteration cycle. The slip
rates for a given time increment spanning times t and t þ Dt are found implicitly,
using values of the resolved shear stress and hardening variables at the end of the
cycle:

_gðaÞ ¼ _g0

~tðaÞtþDt

g
ðaÞ
tþDt

�����
�����
m

sgn ~tðaÞtþDt

� �
: ð27Þ

Since ~tðaÞtþDt and g
ðaÞ
tþDt depend upon the solution variables _gðaÞ, an iterative procedure is

used to solve Eq. (27). Notice that ~tðaÞtþDt and g
ðaÞ
tþDt depend upon y, through Eq. (22)

and the temperature dependence of elastic moduli, Eq. (24). For the isothermal
problem, _y ¼ 0 and r ¼ 0 by assumption, meaning that q of Eq. (18) varies spatially
and temporally such that the energy balance (19) is satisfied throughout the analysis.
We also assume fhtX0 ¼ 1 for the isothermal case.

For the adiabatic problem, we prescribe =xy ¼ 0, r ¼ 0, and initial conditions
fht¼0 ¼ 1 and _yt¼0 ¼ 0. The temperature rate for a given time increment spanning
times t and t þ Dt is found explicitly using quantities at time t:

_y ¼
b
rĉ

Xn

a¼1

tðaÞ _gðaÞ þ
y
ĉ
@yðs

e : _eeÞ

 !�����
t

; ð28Þ

where

b �
Xn

a¼1

tðaÞ _gðaÞ � rðð@xcÞ � yð@yxcÞÞ_x

 ! Xn

a¼1

tðaÞ _gðaÞ
 !�1

; ð29Þ

such that 1 � b is the ratio of the time rate of stored energy of cold working to the
rate of plastic dissipation (Taylor and Quinney, 1934). Note that while b is often
assumed in practice to acquire a fixed value for a particular material regardless of the
temperature-deformation history, with a value of 0:8pbp1:0 typical for engineering
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metals (Kallend and Huang, 1984; Aravas et al., 1990; Zhou et al., 1994), we do not
resort to such a constitutive assumption here. We do however make the usual
assertion that the specific heat capacity for each material, ĉ ¼ constant, a reasonable
assumption for pure tungsten over the temperature range encountered in our
subsequent calculations (Gray, 1972). The temperature at time t þ Dt is updated
simply via

ytþDt ¼ yt þ
_yDt; ð30Þ

while the thermal deformation gradient at the end of the step is found as

fhtþDt ¼ expðaT
_y1DtÞfht ; ð31Þ

with expð Þ the matrix exponential function. For a given time increment in an
adiabatic analysis, Eqs. (27) are solved implicitly using values of _y, ytþDt, and fhtþDt

found via (28)–(31). The thermoelastic term in Eq. (19), upon assuming jy � det fh �
1 þ 3aT ðy� y0Þ can be rewritten as

ry@yeec : _ee ¼ yje�1@yðs
e : _eeÞ � ryjy@yðj

y�1Þðse : _eeÞ

� yje�1f½ð@ylÞ ~gab ~gwd þ ð@ymÞð ~gaw ~gbd þ ~gad ~gbwÞ�ð_eeÞwd

þ 3aT ðj
y�1seabÞgð_eeÞab: ð32Þ

The dependencies of the elastic moduli of the pure W grains on temperature were
obtained (to second order) from the compilation of Yih and Wang (1979):

@yl ¼ �3:4 þ 0:0065T MPa=�C; @ym ¼ �10:3 � 0:0041T MPa=�C; ð33Þ

where T � y� 273 is the temperature in degrees C. Thermal dependencies of elastic
moduli of the matrix phase were neglected in these computations, due simply to lack
of experimental data.

A material point simulator was used to generate average stress–strain and
temperature histories for aggregates of one or more grains, in order to calibrate
constitutive model parameters. In these deformation-controlled simulations,
velocities were prescribed as constant and material accelerations were taken as
zero. Also, Taylor’s (1938) assumption was invoked for polycrystalline simulations,
meaning that f was identical for each grain in the aggregate throughout the time
history of deformation. For adiabatic analyses, each grain maintained its own
temperature, i.e., thermal interactions between crystals were forbidden. Average
Cauchy stresses were calculated for the aggregate for each time increment in the
analysis via standard volume averaging procedures, assuming each crystal occupied
an equal volume in the reference configuration. We emphasize that the Taylor
assumption and prescription of isothermal or adiabatic conditions are enforced here
only for the purpose of calibrating material parameters in conjunction with a
material point simulator (i.e., a finite element mesh consisting of a single element). In
later parts of the present work, polycrystalline aggregates are modeled with
numerous finite elements per crystal, inter- and intragranular interactions are taken
into account, inertial forces participate, and heat conduction is permitted
throughout the domain.



ARTICLE IN PRESS

J.D. Clayton / J. Mech. Phys. Solids 53 (2005) 261–301272
Fig. 2 shows isothermal stress–strain curves for uniaxial compression of 300 pure
W grains of random initial lattice orientations. Notice that here we deform the
crystal(s) in uniaxial compression in the 2-direction, i.e. f 2

:2 ¼ 1 � _�t, with _� the
prescribed nominal strain rate. The macroscopic logarithmic (true) strain is then
defined by �� � � lnðf 2

:2Þ, while �s � V�1
R
s22 dV , with V the total reference

configuration volume of the polycrystal, equally partitioned into 300 grains. Results
correspond to the strain-hardening model outlined in Eqs. (25) and (26), with
material parameters for single crystalline W shown in column 2 of Table 1. Values of
gðaÞ

y ¼ g
ðaÞ
0 jt¼0, A, and B in Eq. (25) were chosen based upon the quasi-static data for

polycrystalline W given by Dümmer et al. (1998), while a relatively large value of
q ¼ 1:4 was selected for use in Eq. (26) following the discussion on latent hardening
in W single crystals by Horwath (1994). The strain rate and thermal sensitivity
parameters, m and p respectively, were obtained from the crystal plasticity model for
pure W of Lee et al. (1999). The mass density in the reference configuration is written
as r0, and values of temperature-dependent material properties (e.g., elastic moduli)
correspond to a reference temperature of 300 K. Strong strain rate sensitivity of the
flow stress is evident in Fig. 2.

Fig. 3 shows isothermal shear stress–strain behavior of the pure matrix phase,
calculated from the response of 300 randomly oriented grains. Shearing was
conducted in the 1–2 plane, i.e., f 1

:2 ¼ 1 þ _�gt. The macroscopic accumulated shear
strain was then found simply as �g ¼ _�gt, while �t � V�1

R
s12 dV . Constants A and B

in Eq. (25) and initial conditions gðaÞ
y ¼ g

ðaÞ
0 jt¼0 were chosen to fit the quasi-static

(_�g ¼ 10�4) torsion data of Zhou (1993), and are shown in column 3 of Table 1, along
with the other material parameters for the matrix phase. The strain rate sensitivity
exponent was assumed to be the same as the pure W grains following the
experimental data of Zhou (1993). We also selected _g0 to match the value for the pure
W, and used Taylor’s (1934) latent hardening assumption typical for FCC metals,
ε
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Fig. 2. Average axial stress vs. compressive true strain for W, isothermal conditions, 300 grains, Taylor

model.
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Table 1

Material parameters

Parameter Value (W) Value (Matrix)

l 204 GPa 137 GPa

m 161 GPa 99 GPa

r0 19350 kg=m3 9200 kg=m3

ĉ 134 J/(kg K) 382 J/(kg K)

_g0 0.001 0.001

m 20 20

q 1.4 1.0

A 630 MPa 200 MPa

B 1.5 0.4

gðaÞy
500 MPa 150 MPa

p �1.5 �1.5

y0 300 K 300 K

aT 5:3ð10Þ�6=K 1:5ð10Þ�5=K

k 160 W/(m K) 100 W/(m K)

â 0.38 0.73

b 0.318 nm 0.364 nm

k 1000 100
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q ¼ 1:0. Note also that the parameters â and k—associated herein with stored energy
of cold working—need not be specified in order to conduct an isothermal
stress–strain prediction.

For the purpose of conducting adiabatic analyses, additional calibrations were
needed to determine values of â and k for each material, requiring particular
assumptions on the nature of stored energy of cold work. Manipulating Eq. (23) and
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then differentiating with respect to time give, respectively,

x � b
ffiffiffiffiffiffi
rT

p
¼

~r@xc
km

¼
1

âmn

Xn

a¼1

ðg
ðaÞ
0 � gðaÞ

y Þ; _x ¼ b
_rT

2
ffiffiffiffiffiffi
rT

p ¼
1

âmn

Xn

a¼1

_gðaÞ
0 : ð34Þ

Additionally,

~ryð@yxcÞ ¼ y@yðkmb
ffiffiffiffiffiffi
rT

p
Þ ¼ kyð@ymÞðb

ffiffiffiffiffiffi
rT

p
Þ ¼

kyð@ymÞ
âmn

Xn

a¼1

ðg
ðaÞ
0 � gðaÞ

y Þ: ð35Þ

Substituting Eqs. (34) and (35) into Eq. (29) then yields

b ¼ 1 �
kðmþ yð@ymÞÞ

ðâmnÞ2

Xn

a¼1

ðg
ðaÞ
0 � gðaÞ

y Þ
Xn

a¼1

_gðaÞ
0

" # Xn

a¼1

~tðaÞ _gðaÞ
" #�1

: ð36Þ

The dislocation density variable can be determined from Eq. (34) once â is known,
i.e.,

rT ¼
1

âmnb

Xn

a¼1

ðg
ðaÞ
0 � gðaÞ

y Þ

" #2

: ð37Þ

Notice that Eq. (37) is a convenient relationship between the total dislocation density
rT and the hardness g

ðaÞ
0 averaged over all n potential slip systems at reference

temperature y0. The value of parameter â can be selected based upon experimentally
obtained measurements of the dislocation line density. Following such a procedure,
we selected a value of â by comparing simulated isothermal results for the dislocation
density rT in ½1 0 0� and ½1 1 2� W crystals with the experimental data of Argon and
Maloof (1966) on single crystals deformed quasi-statically under uniaxial tension.
We chose our value of â for the matrix alloy by matching the dislocation evolution in
randomly oriented 300 grain polycrystals of pure W and matrix materials. Nix and
Gao (1998) used a value of â ¼ 0:5 for copper and silver crystals, close to our values
of 0.38 and 0.73 for W and matrix materials, respectively, as listed in Table 1. It
should be noted that since the experimental data we used to justify our choice of â
suffers from an acknowledged lack of precision (Argon and Maloof, 1966), our
variable rT should be viewed in the present study as a qualitative, yet physically-
based, measure useful for comparing the relative degree of strain hardening
accumulated in regions of W and matrix phases.

If data revealing evolution of b is available from physical experiments (cf.
Hodowany et al., 2000; Rosakis et al., 2000), Eq. (36) can be inverted to deduce an
appropriate value of the parameter k. Vice-versa, if k is known, then instantaneous
values of b can be predicted via Eq. (36). It is apparent from (20) and (36) that b ! 1
as k ! 0, meaning no energy of crystal defects is stored in the lattice when k ¼ 0.
Caution must be used when selecting a value of k such that bX0 at all times
(approximately, in an adiabatic analysis) in order to satisfy the reduced dissipation
inequality (15). Fig. 4 shows the average value �b � V�1

R
bdV for randomly

oriented polycrystals of each phase deformed in uniaxial compression, assuming
fixed values of k for each analysis (Table 1) such that 0:8 ~p �bp1:0 throughout the
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Fig. 4. Average cold work parameter, adiabatic compression, 300 grains, Taylor model.
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deformation history. Subhash et al. (1994a) estimated from infrared temperature
measurements that �b approached unity in their high-rate compression tests on pure
W polycrystals, while Zhou and co-workers (Zhou et al., 1994; Zhou, 1998a, b) used
�b ¼ 0:9 for matrix and pure W phases indynamic finite element calculations. Notice
that instantaneous values of �b depend strongly upon the form of the rate equations
for the slip resistances g

ðaÞ
0 , the latter which, upon consideration of Eq. (34), can also

be viewed as evolution equations for the defect density. For the pure W phase, we
notice that �b decreases with strain to a minimum value around �� ¼ 0:2, then increases
due to the relatively large rate of dynamic recovery dictated by the choice of B ¼ 1:5
in Eq. (25). In contrast, for the more steadily hardening matrix phase (B ¼ 0:4), �b
decreases continuously with increasing strain. Please notice that we include the slow-
rate adiabatic data in Fig. 4 for illustrative purposes, in order to make our
presentation complete, since conventionally (nearly) adiabatic conditions are
achieved only at relatively high rates of loading.

Figs. 5 and 6 depict the stress–strain behavior and temperature histories of both
materials under adiabatic test conditions, where we have used an initial temperature
of 300 K. The volume-averaged temperature is written as �y. For the matrix phase,
upon using the data of Zhou (1993) to estimate an average thermal softening rate
@�y �t, we selected the same values for thermal softening parameters p and y0 (Table 1)
as used for the W phase.

Significant heating and thermal softening is apparent in the W material, especially
at the higher strain rate (_� ¼ 3000=s) where the plastic dissipation is relatively large.
Again, curves for slow-rate adiabatic tests are included for illustrative purposes, with
thermal softening evident in the W grains even at an applied strain rate of
_� ¼ 10�3=s. Comparing Figs. 3 and 5, the relatively strong rate of strain hardening
due to dislocation accumulation in the matrix phase is counteracted by thermal
softening under adiabatic conditions. Notice that, for a given strain rate, the
temperature rise in the W grains tends to exceed that in the matrix, in part because of
the much larger specific heat parameter (ĉ) of the latter. The melting temperature of
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pure W is 3410 K (Boyer and Gall, 1985) while that of the matrix is approximately
1750 K (Zhou and Clifton, 1997). Neither material attained its melting point in our
simulations.
3. Fracture modeling

As discussed by Weerasooriya (2003), failure of WHA specimens subjected to high
rates of macroscopic tensile deformation often initiates via local fracture at W–W
(i.e., grain–grain) interfaces, and less often at interfaces between W grains and the
matrix phase. The former interfaces are thought to be weaker than the latter, based
upon visual examination of recovered specimens which demonstrate that fracture
surfaces are prone to initiate at W–W boundaries and then either propagate along
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W-matrix interfaces, or less often, along cleavage planes within grains of either phase
(Zamora et al., 1992; Weerasooriya et al., 1994; O’Donnell and Woodward, 2000;
Woodward and O’Donnell, 2000; Weerasooriya, 2003).

Consistent with these experimental observations, in our simulations cracks are
generated at interfaces between grains of the same or different phases: W–W grain
boundaries and W-matrix boundaries. Intragranular cracking and fracture at
matrix–matrix grain boundaries are not captured, as these failure modes were
observed less frequently in the aforementioned high-rate experiments (Weerasooriya
et al., 1994; Weerasooriya, 2003) and in the room temperature, quasi-static
experiments of Woodward and O’Donnell (2000). The dynamic finite element
approach is employed, with new fracture surfaces generated at interfaces between
continuum elements when the traction acting upon the potential initiation site
exceeds the intrinsic failure strength of the interface (a material parameter). Hence,
fracture at interfaces initiates when one of the following local stress-based criteria is
attained:

ŝ ¼ ŝ0; t̂ ¼ t̂0; ð38Þ

where ŝ and t̂ are the resolved normal traction and shear traction on the interfacial
surface, measured per unit reference configuration area, and ŝ0 and t̂0 are material
parameters specifying the normal and tangential (i.e., mode I and mode II) fracture
strengths of the interface. In the finite element implementation, duplicate nodes are
generated along all potential fracture surfaces during the meshing stage. Initially
coincident nodes are then constrained to share the same velocity and temperature
histories until either of conditions (38) is reached.

After initiation of fracture, the constitutive response of the degraded material (i.e.,
within the cohesive zones) at the interfaces is dictated by the following set of coupled
irreversible traction-displacement relationships (see e.g. Camacho and Ortiz, 1996):

ŝ ¼ ŝ0 1 �
dn

dc

	 

ðloadingÞ;

ŝ ¼ ŝ0 1 �
dn1

dc

	 

dn

dn1
ðunloadingÞ; ð39Þ

t̂ ¼ t̂0 1 �
jdtj

dc

	 

1 �

hdni

dc

	 

sgnðdtÞ ðloadingÞ;

t̂ ¼ t̂0 1 �
jdt1j

dc

	 

1 �

hdni

dc

	 

dt

jdt1j
ðunloadingÞ; ð40Þ

where dn and dt are the normal and tangential crack opening displacements, dn1 and
dt1 are the maximal values of dn and dt achieved during prior loading, and dc is a
material parameter describing the separation distance at which the cohesive interface
no longer supports traction (i.e., critical opening displacement for total failure). The
Macaulay bracket is written h i, satisfying hxi ¼ x 8xX0 and hxi ¼ 0 8xo0. As
shown in Fig. 7(a) for pure tension and Fig. 7(b) for pure shear, unloading
(reloading) occurs linearly to (from) the origin in traction-displacement space. Also
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prior to attainment of fracture criteria (38), heat conduction across interfaces is
permitted. Upon initiation and subsequent normal separation beyond dc, however,
we enforce the null heat flux conditions rxy.n ¼ 0, where n is the outward normal
vector to the newly-created fracture surface.

It should be noted that the rate- and temperature-independent traction-separation
laws described in relations (38)–(40) were chosen because of their wide acceptance in
the literature and their relative simplicity, requiring few material-dependent fracture
properties. Particular choices of values of these properties are discussed in the next
Section. More elaborate, and potentially more physically realistic, cohesive
constitutive models have been advanced in the recent literature for a variety of
material systems, and dynamic fracture predictions are known to exhibit sensitivity
to the particular choice of cohesive law (Falk et al., 2001). However, as will be
discussed more in the next Section, the fracture properties of the local interfaces in
the WHA material system are difficult to characterize experimentally (Woodward
and O’Donnell, 2000), and even the macroscopic fracture toughness of the alloy is
not known with great precision, as is evident by the broad range of values reported in
the literature (Zamora et al., 1992). Regarding relations (38), ratios of t̂0=ŝ0 deviating
from unity were not explored in the present study, nor were mixed-mode initiation
criteria. Such limiting assumptions were deemed acceptable for the present set of
uniaxial tensile simulations, in which mode I fractures dominated, though we
anticipate extending our framework in the future to explore the influence of mixed-
mode activation criteria on predicted fracture patterns. Exploration of temperature-
and strain-rate-dependence of the cohesive laws (cf. Costanzo and Walton, 2002),
and statistical variations in cohesive strengths among interfaces (Espinosa and
Zavattieri, 2003a, b; Zhou and Molinari, 2004) is beyond the scope of the present
effort, and beyond the support of the limited available experimental data of the
WHA material system under consideration. Parametric investigations probing these
phenomena, as well as effects of choice of various traction-separation curve shapes
(cf. Bjerke and Lambros, 2003) and coupling schemes between normal and tangential
traction–separation relations (Ortiz and Pandolfi, 1999; Espinosa and Zavattieri,
2003b) are reserved for future work.
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4. Finite element simulations: two-phase microstructure

4.1. Numerical procedures

The constitutive models presented in Sections 2 and 3 for thermo-elastoplasticity
of each of the WHA phases and interfacial fracture were implemented within the
EPIC dynamic wave propagation finite element solver (Johnson et al., 1997, 2001).
In this approach, the equations of motion, i.e. the second of Eqs. (6), are integrated
directly and explicitly using the algorithm of Belytschko et al. (1976). The
deformation gradient is then updated within each element as

ftþDt ¼ expðlDtÞft; ð41Þ

where l ¼ _ff�1 is the velocity gradient that is assumed constant over the time interval
ðt; t þ DtÞ. The constitutive update proceeds within each element via the methodol-
ogy discussed in Section 2.5. Contributions to the energy balance (19) from plastic
dissipation, lattice defects, and thermoelastic coupling are calculated, and then the
temperature field is updated following the explicit integration procedure of Johnson
(1981). Possible contributions from cohesive elements to global mechanical and
thermal force vectors are accounted for just prior to the enforcement of boundary
conditions and initiation of the integration step for the deformation field of the next
cycle. The stable time increment for each cycle is chosen as a small fraction of the
time required for a longitudinal elastic stress wave to traverse the smallest element in
the grid.

Results from two different 2D meshes, shown in Figs. 8(b) and 8(c), reconstructed
from an optical micrograph of a sectioned microstructure obtained from an
undeformed WHA sample (Fig. 8(a)), will be discussed in the present work. The
meshes consist of constant strain triangular elements, generated with the PPM2OOF
software package (Langer et al., 2003), readily enabling refinement along material
interfaces (i.e., mesh refinement along potential cohesive fracture surfaces). The grid
in Fig. 8(c) was generated by rotating that in Fig. 8(b) by 90 1, with the latter a direct
reproduction of the image shown in Fig. 8(a). The square domain is of size
L ¼ 150mm, and the area fraction of W–Ni–Fe matrix phase in each mesh is 12.6%.
Fig. 8. Optical micrograph and finite element meshes of two-phase microstructure: (a) image, (b) mesh 1,

(c) mesh 2.
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Fifty distinct W grains are resolved, with grids consisting of a total of 16664 standard
3-node triangular elements and up to 1656 4-node cohesive finite elements inserted at
potential fracture initiation sites along material interfaces.

We enforced the following boundary and initial conditions. Analyses were plane
strain tension in the x1 � x2 plane, meaning that our simulations can be thought to
represent columnar polycrystals extended infinitely in the out-of-plane direction.
Please note that out-of-plane elastic and plastic deformations were permitted (i.e.,
the 3D material models discussed in Section 2 were employed, with the full number
of slip systems enabling out-of-plane lattice rotations), so long as the total
deformation field remained planar. Let the lower and upper edges of the domain be
denoted by X 2 ¼ 0 and X 2 ¼ L, respectively. And let the left and right edges be
denoted by X 1 ¼ 0 and X 1 ¼ L, respectively. The velocity boundary conditions are
summarized as

_x2 ¼ 0 along X 2 ¼ 0;

_x2 ¼ 1:5 m=s along X 2 ¼ L;

_x1 ¼ 0 at ðX 1 ¼ L=2;X 2 ¼ 0Þ: ð42Þ

Additionally, force boundary conditions were applied along the lateral edges X 1 ¼ 0
and X 1 ¼ L such that these edges were constrained to remain straight and parallel,
yet free to contract upon extension of the mesh in the x2-direction. These lateral
edges were free of shear traction; i.e., s12 ¼ 0 along X 1 ¼ 0 and X 1 ¼ L. The sides
were forced to remain straight in order to prevent necking or relative shearing of
large sections of the mesh due to potentially highly localized deformation. Each
lateral edge was constrained in practice by assigning a uniform acceleration €x1 to all
nodes comprising the edge, with this value of €x1 calculated by dividing the total
reaction force along the edge by the total mass of the nodes comprising the edge, a
methodology similar to that employed by Zhou et al. (1994) for imposing periodic
shear deformations. Such periodicity was also intended to instill the mesh with a
global deformation mode representative of an actual element of material within a
deforming test sample, i.e., a representative volume element (RVE). However, it is
noted that we do not presume a priori that our volume of two-phase material
contains a sufficient number of grains to satisfy the definition of an RVE in a strict
sense (Hill, 1963). In order to minimize effects of tensile shock waves that would
arise under impulsive loading, the following initial conditions were applied
throughout the domain:

_x2 ¼ ð1:5X 2=LÞm=s at t ¼ 0: ð43Þ

Null heat flux boundary conditions were enforced as

rxy.n ¼ 0 along

X 1 ¼ 0

X 1 ¼ L

X 2 ¼ 0

X 2 ¼ L;

8>>><
>>>: ð44Þ
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with n the outward normal vector in the spatial frame, and an initial temperature
y0 ¼ 300 K was prescribed uniformly throughout the problem domain. Conditions
(42) result in an applied stretch rate of _�� ¼ 104=s. Simulations were generally
conducted for a total duration of 20ms, producing a nominal stretch of �� ¼ 0:20 at
their conclusion. Total execution times averaged 960 CPU-hours divided among 10
parallel processors on a Silicon Graphics 3900 supercomputer. Please notice that
tension simulations were of interest for the study of (predominantly) mode I fracture
in the WHA material system, as this phenomena has not been probed numerically in
previous computational investigations of this material’s behavior (cf. Zhou et al.,
1994; Zhou, 1998a, b). Note also that even though tension tests are simulated here,
the constitutive models for plasticity in each phase of the material were calibrated
primarily using experimental compression and torsion data, as data for tension is not
readily available at higher strains and strain rates due to the relatively brittle nature
of the material under such loading conditions.

Results from seven distinct simulations are discussed in the present work, listed as
case numbers 1; 2; . . . 7 in Table 2. For case 1, fractures were prohibited. Random
initial lattice orientations for the W grains and matrix phase were assigned. Each
pure W grain was assigned a different initial lattice orientation (i.e., set of Euler
angles), while the entire matrix phase was assigned the same initial orientation, such
that all 50 pure W grains were effectively embedded within a single ‘‘grain’’ of the
matrix phase. In column 6 of Table 2, ‘‘1’’ refers to mesh 1 of Fig. 8(b). For case 2,
all parameters were identical to those of case 1, except that fracture was permitted
along W-matrix interfaces only, with a prescribed strength for opening of cohesive
surfaces at such interfaces of ŝ0 ¼ t̂0 ¼ 2:0 GPa: For case 3, all parameters were
identical to those of case 1, except that fracture was permitted along W–W
boundaries only, with a prescribed strength for opening of these cohesive surfaces of
ŝ0 ¼ t̂0 ¼ 2:0 GPa. For case 4, all parameters were identical to those of case 1, except
that fracture was permitted along W–W boundaries and W-matrix interfaces, with a
uniform initiation strength for opening of potential cohesive surfaces at all interfaces
prescribed by ŝ0 ¼ t̂0 ¼ 2:0 GPa. For case 5, all parameters were identical for those
of case 4, except that the initial orientation of the lattice of the matrix phase was
varied, as indicated by the value ‘‘2’’ in column 4 of Table 2 (an orientation with a
Table 2

Numerical simulations

Case ŝ0, W–W

(GPa)

ŝ0, W-matrix

(GPa)

Matrix

orientation

W

orientations

Mesh

(morphology)

1 1 1 1 1 1

2 1 2.0 1 1 1

3 2.0 1 1 1 1

4 2.0 2.0 1 1 1

5 2.0 2.0 2 1 1

6 2.0 2.0 1 2 1

7 2.0 2.0 1 1 2
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significantly different Schmid factor relative to the other cases was used). For case 6,
all parameters were identical to those of case 4, except that an alternate set of
random initial lattice orientations was assigned to the 50 W grains, as indicated by
the ‘‘2’’ in column 5 of Table 2. For case 7, all parameters were identical to those of
case 4, except that mesh 2 of Fig. 8(c) was used. The same initial lattice orientations
relative to the global specimen axes were used in cases 4 and 7.

We now discuss our choices of material parameters entering the cohesive relations
(38)–(40). For simulations in which fractures were permitted, nominal values of
ŝ0 ¼ t̂0 ¼ 2:0 GPa were assigned, in order to roughly match peak stress levels
reported in experimental high-rate macroscopic data of Weerasooriya (2003), as will
be discussed more later. Dandekar and Weisgerber (1999) estimated from plate
impact experiments the spall threshold stress of WHA to lie between 1.7 and
2.0 GPa. In the actual material, stochastic variations in strength and toughness
among interfaces are of course expected (Woodward and O’Donnell, 2000). Such
variations are not addressed in the present work, but could be readily implemented
within a cohesive finite element framework (Zhou and Molinari, 2004). A uniform
value of dc ¼ 1:0mm was chosen for the critical separation distance in the cohesive
laws of Eqs. (39) and (40), a value thought to best represent the effective fracture
properties of the WHA material system at the length scale resolved by the numerical
discretization (i.e., at the scale of individual grains and their interfaces). Because the
WHA alloys are highly heterogeneous, with fracture behavior dictated by
microstructural features such as interfacial strengths and grain contiguity and
influenced by large-scale yielding (i.e., finite plastic zones), difficulties arise in
obtaining consistent measurements of the macroscopic fracture toughness, with
values of 25pKIcp234 MPa

ffiffiffiffi
m

p
reported by Zamora et al. (1992) and references

therein. Furthermore, the microscopic fracture toughness of local interfaces is
expected to be lower than that of the homogenized material, as recovered uniaxial
test specimens reveal numerous microcracks that do not propagate to cause
macroscopic rupture (Woodward and O’Donnell, 2000). Assuming that the material
behaves linear-elastically and neglecting plastic dissipation which can dominate
energy release in the cohesive zone (Rice and Wang, 1989), Woodward and
O’Donnell (2000) estimated a static fracture toughness of 3:4pKIcp7:6 MPa

ffiffiffiffi
m

p
for

microcracking along interfaces within a WHA, while Dümmer et al. (1998)
calculated values of 0:66pKIcp1:5 MPa

ffiffiffiffi
m

p
for intergranular decohesion in pure

polycrystalline W. The mode I fracture energy corresponding to our choices dc ¼

1:0mm and ŝ0 ¼ 2:0 GPa is Gc � ð1=2Þŝ0dc ¼ 1:0 kJ, which, upon assuming for
illustrative purposes only, an isotropic linear-elastic stress–strain response for the
composite with an effective elastic modulus of E ¼ 3:66ð10Þ5 MPa and a Poisson’s
ratio of n ¼ 0:29 (Dandekar and Weisgerber, 1999), results in a plane strain fracture
toughness of KIc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GcE=ð1 � n2Þ

p
¼ 20 MPa

ffiffiffiffi
m

p
, which we feel is an acceptable

compromise among the aforementioned ranges of values reported in the literature.
Note also that our value of dc is slightly larger than but of the same order of
magnitude of the characteristic length of a typical bulk finite element within the
mesh, which we found of adequate resolution to facilitate stable, converged
solutions. Cohesive elements were deemed of sufficiently small size to resolve the
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process zone, the length of which may be liberally estimated again assuming a linear
elastic bulk response (cf. Rice, 1968; Espinosa and Zavattieri, 2003b).

4.2. Numerical results

Contour plots of solution field variables corresponding to cases 1–7 are given in
Figs. 9–15, respectively, all corresponding to t ¼ 10ms, or an applied tensile strain of
�� ¼ 0:10. In part (a) of each figure, the effective deviatoric stress se referred to the
spatial frame is defined by

se �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2ðr � 1=3trðrÞ1Þ : ðr � 1=3trðrÞ1Þ

p
; ð45Þ

while the scalar effective plastic strain �p of part (b) of each figure is found by

�p �

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þdp : dp

p
dt; ð46Þ

where 2dp � lp þ lpT is the rate of plastic stretching referred to the spatial
configuration. Part (c) of each figure shows the absolute temperature y, part (d)
gives the dislocation density rT introduced in Eq. (23), and part (e) illustrates
instantaneous values of the plastic work-to-heat conversion parameter b of Eqs. (29)
and (36).

Consider first the damage-free case 1, with contours given in Fig. 9. From Fig.
9(a), we notice that the W grains generally support higher effective stress than the
W–Ni–Fe matrix phase. From Fig. 9(b), the opposite is true regarding effective
plastic strain, with the matrix phase accommodating more of the total applied
stretch. Also, as seen in Fig. 9(c), the temperature rise is greatest in regions of the
matrix phase relative to that in the W grains, as a result of relatively greater plastic
deformation and subsequent conversion to heat energy in the former. Clearly, over
the short duration of the simulation (t ¼ 10ms in Fig. 10), heat energy does not have
time to diffuse uniformly throughout the material via conduction. As seen in Fig.
9(d), dislocation activity is also concentrated in matrix regions, as the ductile phase
undergoes more straining, more strain hardening, and more dislocation accumula-
tion than the W phase. Fig. 9(e) shows b, which can be thought of as a snapshot of
dislocation accumulation rates at the selected time of t ¼ 10ms. The greater the value
of b at a particular time instant, the lesser the rate of local strain hardening and
associated dislocation accumulation, and the greater the fraction of plastic
dissipation converted into a temperature rise. Regions of relatively high and low
values of b are not restricted to one particular phase in the material, indicating that
plastic straining and dislocation accumulation are occurring non-uniformly
throughout the sample at t ¼ 10ms.

We now discuss the results for the elastic–plastic-fracture simulations shown in
Figs. 10–15 collectively and relative to those of Fig. 9. Considering the stress
contours (part (a) of each figure), it is clear that stresses are reduced on average as a
result of microcracking, though local stress concentrations in excess of se ¼ 3:0 GPa
are present in all cases. The net stress reduction is greatest in cases 4–7, which permit
fracture at all interfaces, as opposed to cases 2 and 3, in which fracture is only
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Fig. 9. Contours of results at applied stretch of �� ¼ 0:10 for case 1: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2), (e) heat

dissipation parameter b.
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permitted at W-matrix or W–W interfaces, respectively. Homogenized stress–strain
curves for the material samples will be discussed more later. Comparing Fig. 9(b)
with Figs. 10(b)–15(b), damage in the form of microcracking accommodates much of
the inelastic deformation that would otherwise be accommodated by plastic straining
in the matrix phase. Contours of effective plastic strain in Figs. 10(b)–15(b) are
calibrated to show a maximum value of �p ¼ 2:0, with all regions exhibiting strains
greater than this value red in color. In the calculations for cases 2–7, we imposed an
element-based failure criterion in addition to the cohesive fracture model, removing
severely distorted elements from the global mechanical and thermal force balances
and the stable time step estimation calculation upon attainment of very large local
strains, specifically when �p410:0. This criterion permitted us to continue the
simulations to large applied strain levels and also allowed some cracks to propagate
through regions of bulk material. This element failure criterion is justified by the fact
that the most severely distorted elements tend to have undergone significant thermal
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Fig. 10. Contours of results at applied stretch of �� ¼ 0:10 for case 2: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2 ), (e) heat

dissipation parameter b.
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softening as a result of intense plastic deformation, and hence carry relatively little
stress prior to their removal. This element failure criterion was not used for case 1.
As is clear from parts (b), (c), and (d) of Figs. 10–15, intense plastic strain,
temperature rise, and dislocation accumulation are concentrated in the matrix phase
and within relatively distorted regions of the W grains in the vicinity of failed
interfaces. From part (e) of Figs. 10–15, b approaches unity throughout most of the
domain in each case, although scattered regions with relatively low values of b,
indicating instantaneous strain hardening activity, are evident in each figure.

Different microcrack patterns and fracture paths are evident for each of cases 2–7,
as is clear from Figs. 10–15. The most notable differences arise in cases 2 and 3 (Figs.
10 and 11, respectively) relative to cases 4–7, Figs. 12–15. Potential fracture paths are
impeded in cases 2 and 3 relative to cases 4–7, because of the limitation in the former
of crack propagation to either W-matrix or W–W boundaries exclusively. In cases
4–7, propagation of damage is less inhibited and mode I crack(s) are able to
propagate more readily across the entire domain. Thus our simulated cases 4–7 most
closely replicate the hypotheses of Woodward and O’Donnell (2000) and
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Fig. 11. Contours of results at applied stretch of �� ¼ 0:10 for case 3: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2), (e) heat

dissipation parameter b.
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Weerasooriya (2003), who suggested that cracks initiate primarily at the weakest
W–W grain boundaries and grow subsequently by following trajectories of minimum
resistance, in our simulations along interconnected W–W and W-matrix interfaces.
Comparing Fig. 11 with Fig. 12, it is clear that limiting crack growth to W–W
interfaces alone severely restricts macro-crack propagation relative to the case when
both W–W and W-matrix fractures are permitted simultaneously. If we view our
aggregate of material as statistically representative, this result suggests that W-
matrix interface failures (or intragranular failures) must take place for macro-crack
propagation in the actual material, as the W–W boundaries alone cannot account for
propagation across more than a few dozen micrometers, as limited by the occurrence
of continuously linked W–W grain boundaries. Also from Figs. 12–14, we notice that
random changes in lattice orientation of W grains or the matrix phase do affect the
distribution of damage, stress, and deformation within each sample, though
dominant cracks with similar paths traverse the upper and lower thirds of each
mesh in all of these cases.
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Fig. 12. Contours of results at applied stretch of �� ¼ 0:10 for case 4: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2), (e) heat

dissipation parameter b.
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Table 3 provides the time instant, cohesive element number, and interface type
corresponding to the initiation of damage in each simulation. Data in Table 3
correspond to satisfaction of initiation conditions (38) and not total stress relief in
the cohesive zones. We see that damage initiation occurs very early in each case
(t � 0:3ms, at an applied stretch of �� � 0:3%), and always at a W–W interface when
possible (recall that W–W interface fractures were prohibited for case 2).
Significantly, first fracture initiated at W–W interfaces even when all interfaces
were given the same strength of 2.0 GPa, as in cases 4–7. This is expected considering
our prior observation that the W grains tend to carry higher stresses than the matrix
material, meaning that stresses should be relaxed at typical W-matrix interfaces
relative to W–W interfaces. Since fracture occurred at the same location and
virtually the same time instant for each of cases 3–6, we deduce that the deformation
at this point throughout the mesh was nearly (thermo)elastic, since elastic isotropy
was enforced for each phase. However, since the first fracture in case 5 took place
slightly later than that of cases 3, 4, and 6, some minor plastic deformation probably
occurred in the matrix material preceding the first fracture. Recall that case 7 is a
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Fig. 13. Contours of results at applied stretch of �� ¼ 0:10 for case 5: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2), (e) heat

dissipation parameter b.
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different mesh than cases 2–6, hence a different cohesive element failed first in the
former simulation, as would be expected.

Table 1 and Figs. 10–15 point to design protocols for W alloys that could result in
improved resistance to failure. It is suggested that by improving the fracture
strengths of the W–W interfaces, or by reducing their relative frequency, fracture
may be delayed. Such a conjecture agrees with the experiments of Weerasooriya et al.
(1994), who were able to achieve increases in strain-to-failure by reducing the
contiguity of W grains (and thereby the frequency of W–W boundaries) in WHAs
deformed in high rate torsion tests in a Kolsky bar apparatus. Furthermore, our
results suggest that by increasing the strength of one type of interface relative to the
other, and thereby limiting fracture to just a single mechanism (i.e., only one type of
interface, and no intragranular failure), macro-crack propagation may be severely
impeded.

Fig. 16 presents average effective stress–strain data for each of the simulations,
�se � V�1

R
se dV , with V the total volume of the problem domain in the reference
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Fig. 14. Contours of results at applied stretch of �� ¼ 0:10 for case 6: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2), (e) heat

dissipation parameter b.
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configuration. In the legend of Fig. 16, case labels of each simulation consistent with
the identifiers listed in Table 2 are indicated in parentheses. Data for the damage-free
case 1 is given only over the range 0:0p��p0:10, since an element failure criterion was
not used in that particular simulation. The simulation was halted at this strain level
due to highly distorted elements in the vicinity of a localized deformation zone
sustaining significant heating. For the remaining cases 2–7, data is shown over the
applied strain range 0:0p��p0:20. For case 1, a peak stress of �se ¼ 2:55 GPa occurs
at an applied stretch of �� ¼ 0:024, beyond which the average stress decreases as a
result of temperature rise and commensurate thermal softening. Average stress
values are significantly reduced in cases 2–7 relative to case 1 as a result of damage
(i.e., material separation at cohesive interfaces). For case 2, in which fracture is
restricted to W-matrix interfaces, a peak average stress of �se ¼ 1:98 GPa is attained
at an applied stretch of �� ¼ 0:012. For case 3, with fracture allowed at W–W
interfaces only, a peak stress of �se ¼ 1:93 GPa is reached at �� ¼ 0:010. Cases 4–7, in
which all interfaces support potential fracture, exhibit very similar average
stress–strain behavior, with maximum stresses of �se � 1:52 GPa attained at a stretch
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Fig. 15. Contours of results at applied stretch of �� ¼ 0:10 for case 7: (a) effective stress se (GPa), (b)

effective plastic strain �p, (c) temperature y (K), (d) dislocation density rT (�10�7=cm2), (e) heat

dissipation parameter b.

Table 3

Times and locations of initial fractures

Case Time (ms) Element # Interface type

2 0.3375 146 W-matrix

3 0.3122 1309 W–W

4 0.3122 1309 W–W

5 0.3132 1309 W–W

6 0.3122 1309 W–W

7 0.3039 1227 W–W

J.D. Clayton / J. Mech. Phys. Solids 53 (2005) 261–301290
of �� � 0:008 in each simulation. From these results we arrive at the rather obvious
conclusion that increasing the available fracture sites in the sample results in a
greater reduction in effective stiffness and the attainment of a peak average stress at
a lower value of applied strain. Also notice from the similarity of curves for cases 4–7
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Fig. 16. Average effective stress, �se, vs. applied axial stretch, ��.
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that grain orientation and morphology only mildly influence the homogenized
stress–strain behavior, lending us confidence that our sample of material is to a
certain degree statistically representative with regards to effective mechanical
stiffness, though more tests should be conducted to fully justify such an assertion.
Weerasooriya (2003) performed quasi-static and higher rate Kolsky bar tension tests
on WHA samples and measured the effective stress–strain response. At the highest
rate conducted, _�� ¼ 750=s, Weerasooriya (2003) predicted a peak uniaxial stress of
1:65 GPa (corresponding to �se ¼ 1:35 GPa) at a strain of �� � 0:01, followed by
failure of the specimen by necking (i.e., tensile instability). Furthermore, peak
stresses dropped and applied strains at peak stress increased as the applied strain rate
was decreased in that series of experiments. It is difficult to compare the
homogenized stress–strain behavior from our simulations to the macroscopic curves
of those experiments (Weerasooriya, 2003) directly, since different sample sizes,
strain rates, and boundary conditions were enforced in the experiments and
simulations. However, the similarity in the range of peak stress values attained in
experiment and simulation provide confidence in our selection of material
parameters used to model plasticity and fracture. Notice also that the average
effective stresses in the fracture simulations do not relax completely to a value of zero
upon attainment of �� ¼ 0:20. Values of the average stress �se are influenced by local
stress concentrations near damage entities, residual stresses due to intergranular
incompatibility, and out-of-plane and transverse stresses due to the imposed
macroscopic boundary conditions. Fluctuations in stresses are also induced by
inertial effects, though these are smoothed substantially by the averaging process.
However, as will be shown later in Section 4.3, the average tensile stresses in the
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direction of elongation do relax towards zero magnitude as a result of microcracking
transverse to the loading direction.

Average temperatures �y for the problem domain (i.e., for the entire FE mesh) are
shown in Fig. 17, with �y � V�1

R
ydV . The observed trend is a reduction in �y with

increasing occurrence of damage at interfaces, upon comparing values of �y for cases
1–3 with those for cases 4–7 at particular time instances throughout the deformation
history. This phenomenon is easily explained: microcracks in cases 4–7 accom-
modate much of the deformation accommodated by plastic strain in cases 1–3,
leading to less cumulative plastic dissipation converted to heat in the former.
Interestingly, for small magnitudes of applied stretch limited to ��o0:05, rates of
average temperature increase @�� �y in cases 2 and 3 exceed the rate of increase in the
damage free case 1, as a result of extreme localized plastic deformation in the vicinity
of damaged zones in cases 2 and 3. Such regions of extreme temperature rise (locally,
y41000 K) are not observed in cases 4–7, as cracks can propagate more freely
because fracture is active at both types of grain boundary interfaces, and fewer
ligaments of localized plastic deformation and intense heating are formed.

Fig. 18 depicts the average fraction of plastic dissipation converted to temperature
rise, �b � V�1

R
bdV . Note that 0:9o �bo1:0 throughout the duration of each

simulation. Cases 1–3 achieve lower values of �b throughout the deformation history
than cases 4–7, since fracture suppresses plasticity and dislocation accumulation in
the latter, especially in the W grains. Recall that the W grains comprise most of the
volume of the sample (87.4%) and thus have the strongest influence on volume-
averaged quantities such as �b. Rates of decrease �@�� �b for cases 2 and 3 exceed those
for case 1 at low strain levels, again as a result of the emergence of ligaments of
highly strained material in the vicinity of damaged zones where cracks are unable to
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propagate freely due to infinite cohesive strengths of one type of grain boundary
interface.

4.3. Macroscopic damage modeling

An important objective of the present research effort is support of the construction
of a physically realistic macroscopic model of the kinematics, thermodynamics, and
kinetics of fully anisotropic damage for subsequent numerical implementation.
Briefly addressing the kinematics of such a model, the net deformation gradient F for
a damaged material element containing k internal surfaces can be decomposed as
(see derivation based on the generalized Gauss’s theorem in Clayton and McDowell,
2003)

F �
1

V

Z
S

x�NdS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
external
boundary

¼
1

V

Z
V

f dV|fflfflfflfflfflffl{zfflfflfflfflfflffl}
average material

deformation; �F

þ
1

V

X
k

Z
SðkÞ

xðkÞ �NðkÞ dSðkÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
internal surfaces

ðdamageÞ; Fd

¼ �Fþ Fd; ð47Þ

where S is the external surface of the volume element of referential volume V, with
unit surface normal vector N (referred to the reference configuration) and surface
spatial coordinates x. In Eq. (47), �F is the volume-averaged deformation gradient
contribution from the intact material, and Fd is the contribution from internal
surface discontinuities associated with damage entities (e.g. cracks, voids, and shear
bands), each with referential surface SðkÞ, reference normal vector NðkÞ, and current
coordinates xðkÞ. The premise of Eq. (47) for a polycrystal undergoing intergranular
fracture is illustrated in Fig. 19.
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Fig. 19. Deformation and damage in a polycrystalline volume element.
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Shown in Fig. 20 is a measure of the net accommodation of damage in the tensile
direction, for the material volume elements (i.e., aggregates of W grains, matrix
material, and cohesive fracture surfaces) in our numerical simulations 2–7, defined as

L �
Fd2

:2

F 2
:2 � 1

: ð48Þ

Notice that at applied strains ��40:06, damage accommodates more than 90% (i.e.,
L40:90) of the total tensile stretch in cases 4–7, simulations in which cracks were
permitted to open at W–W and W-matrix boundaries. In cases 2 and 3, in which
fractures were restricted to W-matrix or W–W interfaces alone, respectively, damage
accommodation is limited to a maximum of L ~o0:80 at applied strains greater than
�� ¼ 0:15, still a considerably large fraction of the tensile component of the total
prescribed deformation gradient F.
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Accompanying Eq. (47) is the definition of the net nominal stress tensor S, work
conjugate to the time rate of the net deformation gradient, _F (Clayton and
McDowell, 2004):

S �
1

V

Z
S

X� tdS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
traction carried by
external boundary

¼
1

V

Z
V

sdV|fflfflfflfflfflffl{zfflfflfflfflfflffl}
stress in

material; �S

þ
1

V

X
k

Z
SðkÞ

XðkÞ � tðkÞ dSðkÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
traction carried by internal surfaces; Sd

þ
1

V

Z
V

r0X� ð €x� bÞdV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
local inertia and body forces; Si

¼ �Sþ Sd þ Si; ð49Þ

where s ¼ jf�1r is the local nominal stress in the material (transpose of the first
Piola–Kirchhoff stress), t is the traction vector per unit reference area along S, and
XðkÞ and tðkÞ are reference surface coordinates and traction vector, respectively,
supported by damage entity (i.e., cohesive surface) k. Shown in Fig. 21 is the average
nominal stress component �S

22
¼ V�1

R
V

s22 dV for simulations 2–7, a variable which
relaxes towards zero magnitude in each case as the applied deformation exceeds
�� ¼ 0:15 and microcracking dominates the net elongation of the volume element.
Comparing Figs. 20 and 21, we notice an inverse correlation between the volume-
averaged nominal axial stress carried by the material, �S

22
, and damage

accommodation in the axial direction, L: generally, the greater the damage
accommodation factor L, the greater the average load reduction in the aggregate
as a result of distributed microcracking.

For direct comparison with the mode I-type damage observed in experiments
(Weerasooriya, 2003) and in our numerical calculations, the following evolution
ε
0.00 0.05 0.10 0.15 0.20

S 2
2  (

G
P

a)

0.0

0.5

1.0

1.5

2.0

2.5

W-matrix fracture only (2)
W-W fracture only (3)
W-W and W-matrix fracture (4)
W-W and W-matrix fracture (5)
W-W and W-matrix fracture (6)
W-W and W-matrix fracture (7)

Fig. 21. Average axial stress, �S
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, vs. applied axial stretch, ��.
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equation is suggested below for diagonal components of Fd:

ðF dÞ
a
:A ¼ LhFa

:A � da
:Ai; Fd

t¼0 ¼ 0; ða ¼ AÞ; ð50Þ

where the Macaulay brackets are necessary to ensure that mode I cracks do not
contribute to compressive deformation of the volume element (i.e., no interpenetra-
tion of matter or negative crack opening displacements). Notice that Fig. 20 then
provides the time history of L consistent with Eq. (50). For a given imposed total
deformation gradient F, the greater the magnitude of components of Fd, the less
strain accommodation by �F, resulting in a reduction in magnitude of the average
stresses carried by material, as is clear by comparing Figs. 16, 20, and 21.

Extending Eq. (50) to arbitrarily multi-axial deformations, we propose the
following evolutionary description for the contribution of damage Fd to the
deformation gradient F, assuming an undamaged, undeformed sample in the initial
state:

ðF dÞ
a
:A ¼ L̂

a:B

:b:AðF
b
:B � db

:BÞ;
�Ft¼0 ¼ 1; Fd

t¼0 ¼ 0; ð51Þ

where L̂
a:B

:b:A is a stress-state dependent history variable of rank four—nonzero upon
attainment of a critical nucleation criterion—scaling the degree of deformation
accommodation from damage. Considering the effects of superposed rigid body
motion in the spatial frame, xa ! Qa

:bxb þ ca, with the unimodular matrix satisfying
Q�1 ¼ QT and the spatially-constant translation vector ca, we arrive at the following
objectivity requirements:

�F
a

:A ! Qa
:b
�F

b

:A; ðF dÞ
a
:A ! Qa

:bðF
d Þ

b
:A; L̂

a:B

:b:A ! Qa
:cQ�1d

:b L̂
c:B

:d:A: ð52Þ

Notice that Eq. (50) is a particular form of Eq. (52), where in Eq. (50) we have
uncoupled components of evolution of damage deformation and total deformation
corresponding to differing coordinate directions by letting L̂

a:A

:b:B ! Lda
:bd

A
:B. For

complex imposed multi-axial deformations, relationships between components of the
accommodation measure L̂

a:A

:b:B and average stress reduction in each spatial direction
are expected, though specific forms of such relationships may not be trivially
identifiable.
5. Conclusions

Constitutive models for constituents of a two-phase W–Ni–Fe tungsten heavy
alloy have been developed within the framework of continuum crystal plasticity
theory. The material models capture finite deformation, strain rate dependence,
thermal expansion, thermal softening, heat conduction, and thermoelastic heating.
Dislocation densities are treated as internal state variables that contribute to the
strain hardening via a square-root dependency. Upon assuming a particular form for
the residual free energy depending linearly upon the dislocation density, the
framework allows computation of the stored energy of cold working. A cohesive
zone approach has been used to model fracture at W–W and/or W-matrix interfaces
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in dynamic finite element calculations simulating the tensile deformation of a
polycrystalline aggregate of the heavy alloy.

Our numerical results highlight the following aspects of material behavior in the
WHA system, within the context of high-rate (_�� ¼ 104=s) tensile simulations:
�
 W grains tend to support higher stresses than the matrix phase.

�
 Plastic strain, dislocation accumulation associated with cumulative strain hard-

ening, and temperature rise due to plastic dissipation are generally much more
pronounced in the ductile matrix phase than in the initially stiffer W grains.
�
 For a uniform magnitude of cohesive strength assigned to all interfaces, fracture
tends to initiate at W–W grain boundaries rather than at W-matrix boundaries.
�
 Formation of macro-cracks of significant length (i.e., traversing the volume
element) requires activation of fracture sites at both W–W and W-matrix
boundaries.
�
 When interfacial fractures are simulated, cracks accommodate much of the
deformation that would otherwise be accommodated by inelastic straining in the
matrix phase, though regions of localized plastic flow and intense temperature rise
frequently emerge in the immediate vicinity of damaged (i.e., cohesive) zones.
�
 Positive correlation exists between availability of fracture sites, net accommoda-
tion of deformation due to damage, and average stress reduction as a result of
microcracking.

Our simulations have also shown that the macroscopic effective stress–strain
behavior of the aggregate is only mildly influenced by the grain arrangement or the
assignment of different random initial lattice orientations for either phase. However,
it remains to be seen in future studies if prescription of a preferred set of grain
orientations exerts a significant effect on the effective stiffness and the fracture
behavior. Note that our conclusions are drawn in the context of 2D simulations; a
fully three-dimensional finite element model of the composite polycrystalline
microstructure, with cohesive fracture surfaces capable of tracking 3D crack
propagation and interaction (Ortiz and Pandolfi, 1999), would be expected to
represent some improvement in terms of capability of reproducing experimentally-
observed fracture patterns.
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